IDUG

VIRTUAL

2021 EMEA Db2 Tech Conference
SQL Tuning that Still
Sheryl M. Larsen

™>xMQ

W #IDUGDb2 Platform: z/OS

TxMQ works with companies across the globe to innovate and
transform their businesses. To excel in their industries through
the optimal use of people, process and technologies. We do this
leveraging subject matter experts in integration, cloud
architecture, process and analytics. | am honored to join this
brilliant team as the lead in their Db2 Consulting service.

Sheryl is the Senior Db2 Z Consultant at TxMQ. Previously she
worked for, BMC, IBM, Sheryl M. Larsen, Inc., and Platinum
Technology (now Broadcom). She is known for her extensive
expertise in SQL Tuning and has performed detailed Db2
Performance Health Checks for many Fortune 500 clients. Sheryl has
over 30 years' experience in Db2, has published many articles, white
papers and co-authored a book, Db2 Answers, Osborne-McGraw-
Hill, 1999. Currently she is the President of the Midwest Db2 User
Group, an IBM Z Champion, and a member of the Northern lllinois
University Computer Science Alumni Council.

Three Main Stories

What happens inside the Db2 engine when | make a selection on
my cell phone?

What can the Db2 Al for z/OS 1.4.0 do to make my workload go
faster?

What doesn’t the Db2ZAl do that humans will still have to do?

| hope to increase your SQL tuning confidence. If not, rinse and repeat (maybe a little
slower the second time). For English is a second language attendees, please stop to take
notes and translate when needed. All attendees should view the NotesPages as they watch
the video to gain a broader knowledge on the subject.

First SQL Class Db2 V1

SELECT O.ORDERID, C.CUSTOMERID,
B.BILL, SUM(B.AMOUNT) AS TOTAL

FROM ORDER O, CUSTOMER C, BILL B
WHERE B.DATE > ‘01-01-2017’
AND O.ODERID = C.ORDERID
AND C.CUSTOMERID = B.CUSTOMERID
GROUP BY O.ORDERID, C. CUSTOMERID, B.BILL
HAVING TOTAL > 100000
| ORDER BY TOTAL DESC

Gone are the days of manually tuning queries. NOT SO FAST! As smart as the
internal Virtual Data Scientist, inside Db2ZAl is, there are many techniques that it
cannot apply. Query re-write lives on in an Agile work environment! Human eyes
are still required on projects demanding only high-performance SQL moves on into
production. Sheryl will cover all kinds of techniques that are still best practice rules
to follow. Perfect for newbies to Db2 for z/OS due to all the pictures used to
demonstrate techniques, as well as oldies, who need a refresher.

1984

* No internet

* No cell phone
* No laptop

* No ear buds

* No email

* No DB2 Yet

DB2 Beta came out end of 1984. DB2 Version 1 Release 1 for MVS became generally
available (GA) in April 1985 and DB2 Version 1 Release 2 became GA in March
1986 -- only a month after it was announced.

Fast Forward

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, ORDER BY,
Complex Correlation, Global Temporary Tables, CASE, 100+ Built-in Functions including
SQL/XML, Limited Fetch, Insensitive Scroll Cursors, UNION Everywhere, MIN/MAX Single
Index, Self Referencing Updates with Subqueries, Sort Avoidance for ORDER BY, and Row
Expressions, 2M Statement Length, GROUP BY Expression, Sequences, Scalar Fullselect,
Materialized Query Tables, Common Table Expressions, Recursive SQL, CURRENT
PACKAGE PATH, VOLATILE Tables, Star Join, Sparse Index, Qualified Column names,
Multiple DISTINCT clauses, ON COMMIT DROP, Transparent ROWID Column, Call from
trigger, statement isolation, FOR READ ONLY KEEP UPDATE LOCKS, SET CURRENT
SCHEMA, Client special registers, long SQL object names, SELECT from INSERT, UPDATE
or DELETE, INSTEAD OF TRIGGER, SQL PL in routines, BIGINT, file reference variables,
XML, FETCH FIRST & ORDER BY in subselect & fullselect, caseless comparisons,
INTERSECT, EXCEPT, MERGE not logged tables, OmniFind, spatial, range partitions, data
compression, DECFLOAT, optimistic locking, ROLE, TRUNCATE, index & XML compression,
created temps, inline LOB, administrative privileges, implicit cast, increased timestamp
precision, currently committed, moving sum & average, index include columns, row and
column access controls, time travel query, GROUPING SETS, ROLLUP, CUBE, global
variables, Text Search functions, accelerated tables, DROP COLUMN, array data type, XML
enhancements, moving SUM/AVG, Array variables, ARRAY_EXISTS,COUNTBIG,

SELECT INTO statements with UNION or UNION ALL allowed

SELECT INTO statements with UNION or UNION ALL disallowed, OFFSET, 11 global
variables, LISTAGG + 33 more BIFs, LIMIT fetch row count1 K/V

Check current IBM SQL Reference for a complete list:
Db2 12 for z/0S: SQL Reference (ibm.com)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/db2z_12_sqlrefbook.pdf

Cost based Optimizer figures out how to get the data

* The optimizer is responsible for
* Choosing the most efficient method of accessing the data for a given SQL statement

* Think of your transportation choices

» Start/end location, time of day, construction, traffic, available options/routes
All can impact the “quickest” route

The DB2 Optimizer is a cost-based optimizer, which means it calculates the cost of
multiple access paths (in a unit called Timerons), and then chooses the cheapest
access path. One of the advantages of the SQL language is that it means we don't
have to know where a particular piece of data lives on disk or memory.

DB2 Engine Components

SQL Execution
Result SQL

Meta Data

Dynamic Statement’ Access Plans
Cache

Top of Index
Buffer Manager A tree cache

This is the flow of the Db2 Engine components. The following slides go through each step,
one at a time

Meta Data — Everything known about each object

Stored in the Catalog

atlalC
Meta Dat:

Buffer Pool

Optimizer reads all information
needed to calculate cost $
Real Time Stats

A new interactive Catalog application from BMC:
Db2 12 for z/OS Catalog Tables - BMC Blogs - BMC Software

S bmce
Order Free Db2 Reference Manual & Poster >

Db2 12 for z/OS Catalog Tables

SYSIBM.SYSROUTINEAUTH SYSIBM.SYSJARCONTENTS /SIBM.SYSFOREIGNKEY: SYSIBM.SYSPLAN B SYSIBM.SYSCOPY la]

= =

Records the privileges that are Java class source for installed jar.) 0 One row for each application Contains information needed for

held by users on routines. e plan. recovery.
JARSCHEMA VARCHAR(12]

GRANTOR VARCHAR(128) JAR_ID VARCHAR(12] (NAME VARCHAR(24) DBNAME CHAR(8)
GRANTEE VARCHAR(128) CLASS VARCHAR(38 CREATOR VARCHAR(128) TSNAME CHAR(8)
SCHEMA VARCHAR(128) CLASS_SOURCE_ROWID ROWID 1 VALIDATE CHAR(1) DSNUM INTEGER
SPECIFICNAME VARCHAR(128) CLASS_SOURCE CLOB(10M) ISOLATION CHAR(1) ICTYPE CHAR(1)
GRANTEDTS TIMESTAMP IBMREQD CHAR(1) 3 VALID CHAR(1) START_RBA CHAR(10)
ROUTINETYPE = CHAR(1) 'OPERATIVE CHAR(1) FILESEQNO INTEGER
GRANTEETYPE CHAR(1) PLSIZE INTEGER DEVTYPE CHAR(8)

SYSIBM.SYSJAROBJECTS >~ J
AUTHHOWGOT CHAR(1) IBMREQD CHAR(1) IBMREQD CHAR(1)

EXECUTEAUTH CHAR(1) . - - AVGSIZE INTEGER DSNAME CHAR(44)
Binary large object representing SYSIBM.SYSINDEXPART
COLLID VARCHAR(128) ACQUIRE AR SHRLEVEL CHAR(1)

https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/

Static SQL Access Plans Stored in Directory

BINDing is
what puts
the access
path in the
Directory

DB2Clist COBOL source

ﬁ The Big Old Mainframe: DB2 Bind
Precompiler
process

Object Module D82 Ou! The Big D'd Mainframe
Modified
Code

Load Module {gE

The most comprehensive resource on the web for mainframe developers

Collections

Timestamp Packages

*Bind Process read DBRM which is created in precomplier stage and creates access path to
read data.
*Access path along with consistency token is stored in DB2 catalog tables as a package.
*Every package is bound into package list or collection
*Collection name is specified by package parameter.
*A Collection is a group of Packages that are included in one or more Plans. The
QUALIFIER parameter of the bind is used to direct the SQL to the specific set of DB2
objects (tables, views, aliases or synonyms) qualified by this name.
*Apart from building plans and packages, bind also validates:
1.5QL statements using DB2 Catalog
2.Validates authorization id that if owner is allowed to perform bind process
3.Selects access path depending upon availability of indexes, table size etc.

http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html
http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html

Dynamic SQL is stored in the Dynamic Statement Cache
sQL

iz

(e

Dynamic Statement = Access Plans
Cache

Access Plans BIND done
automatically
at run time

DSN STATEMENT CACHE TABLE - IBM Documentation

10

https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table

Execution time is when the Access Plan is given to the Buffer
Manager

LU

Buffer POOI Dynamic Statement = Access Plans
Cache
Access Plans Access Plans

Buffer Manager

=mes

From an app on your phone, to the mainframe storing all the transaction data, your Access
Plan is pulled into the Buffer Manager. This component follows the instructions to pull data
from index, MQT, data into to Buffer Pool that is not already there to meet your query
needs.

Buffer Pool stores data in memory
SQL

-
)

Buffer Pool

IBM® DB2® buffer pools are still a key resource for ensuring good performance.
This has become increasingly important as the difference between processor speed
and disk response time for a random access I/0O widens in each new generation of
processor. An IBM System z® processor can be configured with large amounts of
storage, which if used wisely, can help compensate by using storage to avoid
synchronous 1/O.

12

Stage 1 & 2 filter the data

SQL

¢ B
LU

b

Buffer Pool

o

Rows retrieved for a query go through two stages of processing. Certain predicates
can be applied during the first stage of processing, whereas other cannot be applied
until the second stage of processing. You can improve the performance of your
gueries by using predicates that can be applied during the first stage whenever
possible.

13

TXMQ

Predicates

Indexable Stage 1

Summary of predicate processing - IBM Documentation

Stage 1 Predicates

COL op ANY (non subgqg)
COL op ALL (non subg)

Predicate Type Indexable | Stage 1

Predicate Type indexable | Stage 1 oL < value 1 N ¥
ggt = :zt":o, oxpr | COL <> noncol expr | N Y
COL IS NULL COL NOT BETWEEN valuet N Y
COL op value AND value2

COL op noncol expr COL NOT BETWEEN noncol N Y
O aa” TWEEN value? AND expr1 AND noncol expr2

COL BETWEEN nonceol expri COL NOTIIN (list) N Y
AND noncol exprz2 COL NOT LIKE * char N Y
gg:: :;:'tfj;s’“""' | COL LIKE *%char N Y
COL LIKE host variable COL LIKE *_char N Y
T1.00L = T2.GOL | T1.coL <> T2.coL N Y
T1.COL op T2.COL T1.COL1 =T1.COL2 N Y
COL=(non subgq) COL <> (non subq) N Y
COL op (non subq) COL IS DISTINCT FROM N Y

COL IN (non subq)

COL = expression
(COLA1,...COLn) IN (non subgq)
(COLA1, ...COLn) = (value1,
...valuen)

T1.COL = T2.colexpr

COL IS NOT NULL

< < < < << <<= << (<< < <<= <[<|<

< < < K K[<KL LK [K (][]

Indexable = The predicate is applied to the root page of the
chosen index. When the optimizer chooses to use a predicate

in the probe of the index, the condition is named Matching
(matchingthe index). This is the first point that filtering is
possible in DB2

COL IS NOT DISTINCT FROM 2. Index Screening = The Stage 1 predicate is a candidate for
gcl;..ls NOT DISTINGT ERONM filtering on the index leaf pages. This is the second point of
nonool expression filtering in DB2. If partitioned filters limiting partitions are also
COL IS NOT DISTINCT FROM applied

col expression

coL leNOT DISTINCT FROM 3. Data Screening = The Stage 1 predicate is a candidate for
non subgq e C N N e
11 CoL |15 NOT DISTINGT filtering on the data pages. This is the third point of filteringin
FROM T2.COL DBz.

T1.COL IS NOT DISTINCT Y Y N i

FROM T2.col expression 4. Stage 2 = The predicate is not listed as Stage 1 and will be

applied on the remaining qualifying pages from Stage 1. This
is the fourth and final point of filtering in DB2.

There are total of 54 with 33 notes associated to the current list. Find the updates
here:
Summary of predicate processing - IBM Documentation

Indexable and stage 1 predicates 31 The following predicates might be evaluated by
matching index access, during index screening, or after data page access during stage

There are 42 of them shown in slide 18 notes.
Stage 1 not indexable predicates 21The following predicates might be evaluated during
stage 1 processing, during index screening, or after data page access

There are 12 of them shown in slide 19 notes.

Stage 2 partial list is shown in slide 20 notes

14

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

TXMQ

Indexable Stage 1 Probe
Stage 1 Index Filtering W“ERg_%'-KA;J_—S;":'KE :

Stage 1 Data Filtering B.TOKEN_NR
AN[C.ROLE CD > ?
Stage 2 AND GASE C.SEX WHEN ‘X’
THEN ? END)\= ‘ABCDE’

TOKEN/NR.
ROLE CD

Non-Leaf Page Non-Leaf Page
000 00

This is an example of a non-optimal index. The query has one join predicate and 3 local
filters on the C table. Trouble is there are only two columns in the index leaving the
filtering pushed back until steps 3 and 4. A better index would be
TOKEN_NR.LAST_NM.ROLEC_CD.SEX. This moves all the filtering to step 2, greatly reducing
the 1/0 necessary for the query.

15

TXMQ

Indexable Stage 1 Probe
H H WHERE C.LAST_NM LIKE ?
Stage 1 Index Ellte!'mg C.TOKEN NR =
Stage 1 Data Filtering B.TOKEN_NR
AND C.ROLE CD >?
Stage 2 AND CASE C.SEX WHEN X’
THEN ? END) = ‘ABCDFE’

TOKEN_NR.
_ LAST_NM.
Non-Leaf Page RO L E_C D . Non-Leaf Page

000

A better index would be TOKEN_NR.LAST_NM.ROLEC_CD.SEX. This moves all the filtering
to steps 1 and 2, greatly reducing the I/0O necessary for the query.

1. skipped

2. Stage 1 Index Filtering - If there is no predicate involving the first column of the index,
tree navigation is not allowed (0 matching). Any Stage 1 predicate (all 54) can be
applied on the leaf page. This point of filtering is called index screening. Stage 2
conditions can also be applied after the Stage 1 conditions are applied (if this is index-
only access and the Stage 2 column is included in the index - like the column SEX
above.

16

Filtering — z/OS

=

WHERE C1 = ?

AND (C2>?

AND (C3<?

AND C4=?

AND C5BETWEEN ? AND ?
AND C6IN(?,7?,?)

ORDER BY C1, C2, C3

Stage 1 Sharpie pen is much thinner that
Stage 2 because Stage 1 only has 54 filters
and Stage 2 has an almost infinite list (what
ever is not Stage 1 is Stage 2)

Partial list of Stge2:

COL BETWEEN COL1 AND COL2 10
evalue NOT BETWEEN COL1 AND
coL2

svalue BETWEEN col expr and col
exprz

*T1.COL<>T2.COL
*T1.COL1=T1.COL2 3%
*T1.COLl1op T1.COL2:2
*T1.COL1<>T1.COL23

*COL = ALL (noncor subq)

*COL <> (noncor subq) 2

*COL <> ALL (noncor subq)

*COL NOT IN (noncor subq)

*COL = (cor subq) >

clc2c3

c4c5¢c6

*COL = ALL (cor subq)

*COL op (cor subqg) >

*COL op ANY (cor subq) %2

*COL op ALL (cor subq)

*COL <> (cor subq) 2

*COL <> ANY (cor subq) 2
*(COL1,...COLN) IN (cor subq)
*COL NOT IN (cor subq)
*(COL1,...COLNn) NOT IN (cor subq)
*T1.COL1 IS DISTINCT FROM
T2.COL2:3

*T1.COL1 IS DISTINCT FROM T2 col
expr &1

*COL IS NOT DISTINCT FROM (cor
subq)

*EXISTS (subg)2

17

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

If a Sort is needed for ORDER BY/GROUP BY

Work Files are
filled with the
remaining
result data
and sorted ...
sometimes

Sort rules are:

™~

If you are sorting on a unique key do not include any other columns to the ORDER BY
Do not add redundant columns to the ORDER BY.

So not SELECT columns that you already know example:

WHERE NAME = ‘SHERYL

Do NOT put NAME in the SELECT list

18

The Result is brought back in memory

Data is sent to
calling

Result

SQL

program

Indexable and stage 1 predicates- 3'The following 20.
predicates might be evaluated by matching index access,

during index screening, or after data page access during

COL LIKE UPPER (CAST (SQL-
variable AS data-type))? 22

21. COL LIKE UPPER (CAST (global -

stage 1 processing

1. .COL=value 131 22.229
2. COL =noncol expr 211121529 31,32 23.T1.COL=T2.COL
3. COLIS NULL 22t 24.T1.COLop T2.COL
4. COLop value 1331 25.T1.COL=T2 col expr &2 1L 12,14,15 25 27,29
5. COL op noncol expr 2 11,12,13 29,31, 32 26.T1.COLop T2 col expr &2 11,12,13,14,15, 29
6. value BETWEEN COL1 AND COL2 1832 27.COL = (honcor subq)
7. COLBETWEEN value1l AND value2 2 28. COL op (noncor subq) 28
8. COL BETWEEN noncol expr 1 AND noncol 29. COL = ANY (noncor subq) 22 22

expr 221L,12,13,23, 29 30. (COL1,...COLn) IN (noncor subgq) 22
9. COL BETWEEN expr-1AND expr- 31.COL = ANY (cor subq) 122229

267,11, 12,13, 14,15, 27, 29 32.COL IS NOT DISTINCT FROM value 18
10. COL LIKE 'pattern' 2 33.COL IS NOT DISTINCT FROM noncol
11.COLIN (List) 1718 expr & 11,12,15,29
12. COL IS NOT NULL 2t 34.T1.COL1 IS NOT DISTINCT FROM T2.COL2 24
13. COL LIKE host variable 222 35.T1.COL1 IS NOT DISTINCT FROM T2 col
14. COL LIKE UPPER (‘pattern') 2 expr &2 11,1214, 15,29
15. COL LIKE UPPER (host-variable) 222 36. COL IS NOT DISTINCT FROM (noncor subq)
16. COL LIKE UPPER (SQL-variable)? 2 37.SUBSTR(COL,1,n) = value
17. COL LIKE UPPER (global -variable)? 22 38. SUBSTR(COL,1,n) op value
18. COL LIKE UPPER (CAST (‘pattern' AS data- 39.DATE(COL) = value=

type))? 2 40. DATE(COL) op value=
19. COL LIKE UPPER (CAST (host- 41. YEAR(COL) = value

variable AS data-type))% 22 42. YEAR(COL) op value=

variable AS data-type))? 22

19

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

Source may be Remote

NI Result SQL

%‘n
l Meta Data

Dynamic Statement’ Access Plans
Cache

Top of Index
Buffer Manager tree cache

ﬁ!h‘

Stage 1 not indexable predicates 31
The following predicates might be evaluated during stage 1 processing, during index
screening, or after data page access.

COL <>vaglue &1

COL <> noncol expr 8129

COL NOT BETWEEN valuel AND value2
COL NOT IN (List)

COL NOT LIKE ' char' 22

COL LIKE '"%char' 1. 22

COL LIKE' _char'+22

T1.COL<>T2 col expr 81,2729

COL op ANY (noncor subq) 22

10 COL op ALL (noncor subq)

11. COL IS DISTINCT FROM value &1L

12. COL IS DISTINCT FROM (noncor subq)

©CoNoGA~WNE

20

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

What Could Go Wrong?

— Result

SQL

T

l Meta Data

l MNis
Dynamic Statement’ Access Plans
Cache

Buffer Manager

Stage 2 predicates- The following predicates must be
processed during stage 2, after the data is returned.

The list is not complete due to any predicate not Stage 1
Indexable or Stage 1 index/data screening is State 2.

COL BETWEEN COL1 AND COL2 10
evalue NOT BETWEEN COL1 AND COL2
svalue BETWEEN col expr and col expri2
*T1.COL<>T2.COL
*T1.COL1=T1.COL2 3%

*T1.COL1lop T1.COL2:S
*T1.COL1<>T1.COL23

*COL = ALL (noncor subq)

*COL <> (noncor subq) 2

*COL <> ALL (noncor subq)

*COL NOT IN (noncor subq)

*COL = (cor subq) 2

*COL =ALL (cor subq)

*COL op (cor subqg) 2

*COL op ANY (cor subq) %2

*COL op ALL (cor subgqg)

*COL <> (cor subq) >

*COL <> ANY (cor subq) 12

*(COL1,...COLN) IN (cor subq)

*COL NOT IN (cor subq)

*(COL1,...COLN) NOT IN (cor subq)

*T1.COL1 IS DISTINCT FROM T2.COL2 2
*T1.COL1 IS DISTINCT FROM T2 col expr &1
*COL IS NOT DISTINCT FROM (cor subq)
*EXISTS (subq)X2

sexpression = value 2132

sexpression <> value %

sexpression op value 2> 32

sexpression op (subq)

*NOT XMLEXISTS

*CASE expression WHEN expression ELSE expr
ession END = value 32

Indexable but not stage 1 predicates The following
predicates can be processed during index access, but
cannot be processed during stage 1

XMLEXISTS 28

21

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

* Review of what IBM’s Db2ZAl can and cannot do

* How to change the optimizers mind
Case Studies Using a Proven Method

Extreme Tuning
How to put a query on a diet

22

The Db2 Optimizer

How Does it Decide so Fast?

Good Input

— 35 years of catalog statistics refinement

— Ability to use some real time information

— Ability to refine scope of data collection- STATSFEEDBACK
Cost-based Smarts

— 35 years of algorithm refinement

— Creates a cost model for every query
are used when query values are

DB2 12 for z Optimizer (ibm.com)

DB2 12 for z Optimizer

Terry Purcell

https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf

The Trillions of Optimizer Cost-based Results

DB2 12 for z Optimizer (ibm.com)

* 30% - 90% reduction in ET and CPU

* Complex OJs, UNION ALL, UDFs & Table
UDFs

* Combinations of Table Expressions,
Views and Outer Joins

* VARGRAPHIC data type

* Disorganized data, poor CR indexes

* Nearly 100% NEW Access Paths vs.
DB2 11

Figure 3 Workload characteristics of workloads in the 30—-90% CPU reduction range

24

https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf

Default Statistics

COLCARDF
>=100,000,000
>=10,000,000

Factor for <, <=, >, >=
1/10,000
113,000

Factor for LIKE or BETWEEN
3/100,000
110,000

=1.000,000

1/1,000

310000 ——=

>=100,000
>=10,000
>=1,000
>=100
>=2

=

<=0

11300
1100
1130
110
13
1n
113

111,000
31,000
1100
31100
110

1n
110

Open ended ranges, >’ etc. are larger 1/1000 vs. closed ended ranges, BETWEEN or LIKE
are smaller. 3/10,000. This is the default % of rows the optimizer is estimating will come
back from your WHERE clause. Notice that it screams, “Use and Index!”

This may be far from reality.

Use machine learning to improve the quality and effectiveness of inputs to the optimizer
cost model

There Are Many Ways to Get to Your Data

Matching Index ® ® Nested Loop Join
Multiple Index Access g ® IN(list)
Merge Join @

. @ NonMatchingIndex

Limited Partition Scan @ LR W, . ;'W
* s e v

Direct Row @ A
=@ One Fetch
Pair Wise Star Join @

@® Hybrid Join Type C
Table Scan @ 3 ybrid Join Type

Merge Scan Join @ ® Table Scan

Table Scan @ I ® |ist Prefect

Hybrid Join Type N ® ® Sparse Index

It wasn’t always like this, but IBM keeps adding new cool access techniques.

From Terry Purcell’s RedPaper: DB2 12 for z Optimizer (|bmcom)

“nearly 100% new access paths vs. Db2 11” .

26

https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf

The Answer: Personalize Your Optimizer

Technology needed:
from workload data collected in your

* Uses derived insight in determining optimal access paths for SQL statements

without requiring data scientist support

From Overview of IBM Db2 Al for z/0OS

Db2® Al for z/OS® (“Db2ZAl”) empowers the optimizer in your Db2 for z/OS engine
to determine the best-performing query access paths, based on your workload
characteristics. In addition, Db2ZAl detects Db2 system performance exceptions
and provides recommended actions for tuning which are based on your
environment.

The optimizer consists of Relational Data Services (“RDS”) components that govern
guery transformation, access path selection, run time, and parallelism for every SQL
statement in your system. The access path for an SQL statement essentially
dictates how Db2 accesses the data that the query specifies. It determines the
indexes and tables that are accessed, the access methods that are used, and the
order in which objects are accessed.

Leveraging machine learning technology, Db2ZAl collects data from the Db2 for
z/OS optimizer and the query execution history, which are derived from workloads in
your unigue operating environment. As part of the model training

process, Db2ZAl then finds patterns from this data and learns the optimal access
paths for queries entering Db2 for z/OS.

Once trained, the model is ready to be deployed into production, providing insights
to the optimizer's access path selection. These insights are in addition to what the
optimizer uses today in the selection of the best query path. The information is
unique to your environment, and currently unknown to the traditional query
optimizer. With the new intelligence on the insights gained from these models, the
guery optimizer is better able to identify the optimal access paths for SQL
statements

27

IBM Db2

Al Makes Db2

IBM Db2 AI for z/0S

Virtual Data Scientist! Has the data, knows which algorithm to use, learns from modeling
and scoring, provides solutions, and cleans up after itself.

28

Augment the Db2 Z Optimizer with Al/Machine
Learning!
Yaa

Correct estimates used for :hv and ?

Add OPIMIZE FOR n Rows when # of rows fetched is learned

Examine Sort behavior to optimize memory usage

Optimize parallelism in packages using history
New Dashboard to set up self tuning and healing

The Db2 Z Optimization Team Took Action:

Data Tech Summit Presented Live Demo but recorded from Silicon Valley Lab
October 5-7, 2021

Join session in Channel 1 - Many considerations can be made regarding design
choices when building and maintaining Db2 for z/OS indexes with regard to high
performance. This presentation is going to attempt to address many of those
choices, but it is the combination of knowing how an application is going to use the
database as well as adequate testing to make the appropriate design decisions
Tom Beavin, Db2 Developer, IBM

Tom Ramey, Director, WW Z Data and Al, IBM

29

https://video.ibm.com/channel/tLjwDJS53N3
https://video.ibm.com/channel/tLjwDJS53N3
https://video.ibm.com/channel/tLjwDJS53N3
https://video.ibm.com/channel/tLjwDJS53N3

9

VDS — Virtual Data Scientist

Catalog statistics Watches 50 executions

Deep execution statistics

History A list of ready packages

Db2ZAl SQL Performance

Classification for known patterns ~ 9ashboard

Linear Regression for Date/Time
sequencing Keep models current and

removes old behavior

Db2 12 adds Automatic
Statistics Collection

Models for random behavior

A type of supervised machine learning: classification

Classification Predictive Modeling. In machine learning, classification refers to a
predictive modeling problem where a class label is predicted for a given example of
input data.

Another type of supervised machine learning: regression

Regression is a supervised machine learning technique which is used to predict
continuous values. The ultimate goal of the regression algorithm is to plot a best-
fit line or a curve between the data. The three main metrics that are used for
evaluating the trained regression model are variance, bias and error.

Automated statistics collection - IBM Documentation

30

https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection

Fill in Unknown Values - :hv or ?

Learn from the workload

WHERE (LASTNAME, FIRSTNAME) > (‘SMITH',
JRMNERE (C1,c2,C3,C4) > (:C1L, :C2L, :C3L, :C4L)
I :

AND, () 4 browsing cursor that uses
ey

This is the game changer for static SQL. Think BIG static Batch runs and Dynamic Queries
too. This alone can flip table join sequences.

31

Predict # of Rows Qualifying

OPTIMIZE FOR n ROWS

Most DB2 predicates are based on the columns of a table. They either qualify
rows (through an index) or reject rows (returned by a scan) when the table is
accessed.

32

Optimize Sort Tree Usage and Memory

SQL with
large rows

Any > 4K row sort
A A A A

Fill in Tree

Swap
If just REORG' Swap Swap
No Swap

Db2 Al for z/OS will feel the organization of your data during training and adjust its
algorithm to use less memory over time. For z15, sort hardware assist may be available.

33

Optimize Parallelism in non-OLTP Queries

DEGREE = ‘ANY’

DSNZPARM CDDSSRDEF = ‘ANY’

DB2 Version 6 had two releases because parallelism was broken and gave bad results. This
caused EVERYONE to back off from using it. That was so long ago it no longer applies. The
current Db2 Optimizer is cautious of taking queries parallel in general. Db2ZAl turbo
charges its appetite for going more aggressive into parallelism.

34

Db2ZAl New SQL Optimization
Dashboard Automation

I

Show Results lake Actions

oo
o)

AN
o LA i

Models

Learning
Complete

workioad |

a

Re-run using models

Let CACHE refresh + FREE STABILIZED DYNAMIC QUERY

Rebind or Auto phase in*

0-10%

Improvement in workload

*Trace 318 + Version 505 is required

From IBM’s Overview of V1.4.0:

Overview of IBM Db2 Al for z/OS - IBM Documentation

Db2ZAI now offers a simplified architecture, eliminating the need for a Linux environment.

Figure 1. Architecture of Db2ZAI

USS z/0S 2/0S
WMLz
Db2
User interface and user Core services (Model and Online scoring
management deployment mgmt, & etc) . Spark-integration server Jupiter Kernel Gateway 7 Statemen
NodeJS server Akka server Lierty sarver SQL optimizer oty
Db2 ” Statstics, remote
|ZODA instrumentation stats, & zparm
Spark DOF Profile tabies
[——
[Db2ZAl
" tasks ‘WML metadata
(2IIP officaded)
akia assess db2zal training ——|
; SQL optimizer model
User interface Backend R 3 A
tri
NodeJS server NodeJS server Nod:)lg'grver Rierty server (Mdra) Db2ZA metadats

’]°T°"'°"|lm P

Daemon tasks

35

https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos

Self Healing and Tuning Workloads

Intervals + Frequency for Top 10 Auto

What's new in IBM Db2 Al for z/0S 1.4.0 - IBM Documentation

What's new in version 1.4.0?

sImproved automated SQL regression detection and resolution, enabling
regressions to be detected and resolved more quickly, and in some cases in real-
time, even before the query has completed execution.

*Sort optimization enabled for OLTP queries, which can result in savings of CPU
resources.

sImproved sort optimization when combined with the IBM® z15™ hardware sort
assist for SQL, whereby learning can improve exploitation of the z15 sort feature.
sImproved SQL optimization user interface, which clearly shows the benefits

that Db2ZAl is providing by highlighting progress, benefits, and actions to be taken:

+ Db2ZAl now shows the progress it has made in learning about static
SQL packages and dynamic SQL statements.

* The improved SQL optimization dashboard shows the benefits provided
by Db2ZAl in terms of SQL statements improved, average CPU
improvement, and access path regressions resolved.

* The improved user interface clearly indicates the recommended actions
to be taken to improve performance.

36

https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140

IBM
Recommended
Use Cases

1. Define work periods
2. Training first time

3. Scheduled assessments
4, Daily & on-demand

The larger the graph and the more rows involved,
the more costly it is.

This is part of a picture of the most expensive query | have ever tuned

37

The 5t Use Case —

EXAMINED

CPU EXECS ELAPSED GETPAGES ROWS PROCESSED STAT_SORT STAT_INDX STAT_RSCN

STMT_ID
298,690,230 2629 0 283543230 5606
112873 0 112873 0
113783 0 113783 0

1022787 4705.7 5258 4722.46 729,475,051
996083 214.98 112873 179.02 11902513 68238
800016 214.56 113783 190.44 11947215 0

In Procedure SQL:

Math:
Exec MONSTER query

729,457,051/5258 =
138,731 Getpages per Exec

% billion getpages with traced turned on only for 3 days. Orders of magnitude more
expensive that anything else. This is not SQL injection. This is SQL explicitly forced to

execute and read the entire result.

Had no Sheriff

SQL statements can sneak into your shop. The query re-write took the getpages
down to 6 per execution. Just a correlated EXISTS check returning no data. Back
track to the actual business question being asked to see if the query answers
correctly.

39

DB2 CPU Reduction

A u“_u

062100, 0600 1500 0000 09:0(0099 0900 1800 10300 1200

21:0 O
> 08/06/12 08/20/12 09/0312 09111z 1URTIT paamaes R

900 MIP

The tuned expensive query brought down IBM MIPS used 300 points in one day. The entire
manual tuning effort to seven months to complete starting at a near $5million looming CPU

upgrade 1600 MIPS and reducing to 600 MIPS. No upgrade was needed for the next five
years!

40

: Augment the Db2 Z Optimizer with
Al/Machine Learning!

BA WY

Fill in “unknown” values in queries — Use Classification, Linear
Regression and Model random behavior to correct estimates
Predict number of rows processed and add OPIMIZE FOR n =
Optimal Rows

Examine Sort behavior to optimize memory usage

Optimize Parallelism in non-OLTP packages

Set up workloads in the new dashboard to keep and eye on
your dynamic and stati

K. i ’

Hire a full time Sherriff to keep an eye on your workload and your statistics!

41

est Practices for Query Design From |IBM

code mathematics on columns in
tes.
ly on the columns that are needed.

effectiveness. First code the WHERE column

clauses that reference indexed keys, then
the WHERE column clauses that limit the

lengths when joining two columns of
different data types or lengths. One ¢
columns must be converted to eithe

d to ORDERBY BY EMPNO,
\ME when you can ORDERBY

out for the LIKE predicate. Begins
gic is indexable. Contains is not
ole. Ends With is not indexable.
code Not Between. Rewrite it as
R :HV<

most data, and then the WHERE clauses on

all columns that can filter the data further. 17.
11. When looking for a small set of records, try

to avoid reading the full table by usingan 18.

index and by providing any possible key

values. You can also use more WHERE 19. Minimize the number of times DB2 S

clauses so that the fetch goes directly to the statements are sent.

actual records. 20. Only select the columns that are nee

type or the length of the other colu
Limit the use of functions against lar;
amounts of data

Do not code functions on columns in
predicates.

ch First XX Rows whenever possible. 12.

ure cardinality statistics exist for all
s in all tables.
ot Exists over Not In. Both are stage

cates but Not Exists typically 13.

orms the Not In, especially if the list

All Case logic should have an else coded,
which eliminates DB2 returning nulls by
default if all the Case conditions are not
met.

Stay away from Not logic if possible.

Minimize the number of times cursors are

This is what

oining two tables the execution is
the larger table is on the left side of 14.

HERE clauses with columns that 15.
ique or good indexes.

Db2 Al for z/OS
Cannot Do!

opened and closed. Code stage 1 predicates
only.

Rewrite any stage 2 predicates. Use FOR
FETCH ONLY on all read only cursors.
Reduce the number of rows to process early
by using Sub-selects and WHERE predicates.

ze WHERE clauses to maximize their 16. Avoid joining two types of columns and

Best practices for query design from IBM Efficient SQL list: 8.8.1 SQL best practicgsttps://WWW- red bOOkS

Ibm.com/Redhooks.n:
Watch out for the LIKE predicate. Begins With logic is indexable. Contains is not mdexal:]ﬁéRr@dbﬁ]OkﬁnmaCtS/S
0248514.htmI?Open

Code Not Exists over Not In. Both are stage 2 predicates but Not Exists typically outperforms the Not In, especially if the list is
When joining two tables the execution is faster if the larger table is on the left side of the join.

Prioritize WHERE clauses to maximize their effectiveness. First code the WHERE column clauses that reference indexed keys,
then the WHERE column clauses that limit the most data, and then the WHERE clauses on all columns that can filter the data

When looking for a small set of records, try to avoid reading the full table by using an index and by providing any possible key
values. You can also use more WHERE clauses so that the fetch goes directly to the actual records.

All Case logic should have an else coded, which eliminates DB2 returning nulls by default if all the Case conditions are not met.
Stay away from Not logic if possible. Minimize the number of times cursors are opened and closed. Code stage 1 predicates onl

Avoid joining two types of columns and lengths when joining two columns of different data types or lengths. One of the columr

1. Do not code mathematics on columns in predicates.
2. Sort only on the columns that are needed. No need to ORDERBY BY EMPNO, LASTNAM
3.
4. Do not code Not Between. Rewrite it as >:HV OR :HV<
5. Use Fetch First XX Rows whenever possible.
6. Make sure cardinality statistics exist for all columns in all tables.
7.
long.
8.
9. Code WHERE clauses with columns that have unique or good indexes.
10.
further.
11.
12.
13.
14. Rewrite any stage 2 predicates. Use FOR FETCH ONLY on all read only cursors.
15. Reduce the number of rows to process early by using Sub-selects and WHERE predicates.
16.
must be converted to either the type or the length of the other column.
17. Limit the use of functions against large amounts of data
18. Do not code functions on columns in predicates.
19. Minimize the number of times DB2 SQL statements are sent.
20. Only select the columns that are needed.

https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open

Ny SQL Review Checklist

i

© N DU AW

Examine Program logic

Examine FROM clause

Verify Join conditions

Promote Stage 2’s and Stage 1 NOTs
Prune SELECT lists

Verify local filtering sequence
Analyze Access Paths

Tune if necessary

1. Examine Program logic — check for program filtering and joining. Move work into
the query.

2. Examine FROM clause — order of tables insignificant unless > 9 table joins. List
preferred join sequence for this and OUTER JOINs

3. Verify Join conditions — make sure every table is hooked up correctly to avoid
cartesian joins

4. Promote Stage 2’s/Residuals and Stage 1’s if possible — promotions can change
access paths

5. Verify data type matches — mismatched numeric and date/time will cause delays in
filtering and alter the access path

6. Prune SELECT lists — remove columns with values determined to be static by
WHERE clause filtering. Remove columns used in the ORDER BY or GROUP BY
sequencing but not needed for the display.

7. Verify local filtering sequence — If host variables are used, add parenthesis to
override the predetermined filtering sequence when necessary. This reduces the
CPU required to disqualify rows

8. Analyze Access Paths — Only check the access path of the FINAL query, after query
rewrite, bound with production statistics in a subsystem that resembles the
production thresholds as closely as possible.

9. Tune if necessary — A topic for today!

Tuning Techniques to Apply When Necessary

S

OPTIMIZE FOR n ROWS al’
No Ops _;_D:'Gﬂr?g/
LI

Index & MQT Design

iﬂ-

[

HER

DISTINCT Table Expressions
Odd/old Techniques
Manual Query Rewrite

You can use multiple techniques but should add them one at a time.

TXMQ

TXMQ

OPTIMIZE FOR n ROWS
FETCH FIRST n ROWS

* Both clauses influence the Optimizer
* To encourage index access and nested loop join

* To discourage list prefetch, sequential prefetch, and access
paths with Rid processing

* Use FETCH n = total rows required for set

* Use OPTIMIZE n = number of rows to send across network
for distributed applications

* Works at the statement level

The IBM Db2 Al for z/OS product adds Optimize for n Rows if you forget.

45

Fetch First Example

Optimizer choose List Prefetch Index Access + sort for
ORDER BY for 50,000 rows

SELECT S.QTY_SOLD All qualifying rows processed (materialized) before
ol first row returned = .81 sec (less than 1 sec)
, S.ITEM_NO

, S.JITEM_NAME <.1sec response time required
FROM SALES =/ s a Db2 12 enhancement to multi-
WHERE S.ITEM_NO > :hv i index list prefetch-based
ORDER BY ITEM_NO

New Index ITEM_NO
unclustered

Non-Leaf Page

3 0co0o0o0
Leaf Page Leaf Page 1 Leaf Page Leaf Page Leaf Page
cooocooflocoooo coooofloccooofloocooo

Improved performance and reliability of index access with list prefetch - IBM
Documentation

NEW Db212 List Prefetch enhancements

Adaptive index is a Db2 12 enhancement to multi-index and single index list
prefetch-based plans that introduces logic at execution time to determine the
filtering of each index to ensure the optimal execution sequence of indexes, or
quicker reversion to table space scan if no filtering index exists.

This enhancement does not require any usage of REOPT bind parameters and
therefore avoids any reoptimization overhead at execution time.

TXMQ

https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch

Limited Fetch in Action

Optimizer now chooses Matching Index Access
(first probe .004 sec)

Query #1 Tuned No materialization

Cursor closed after 22 items displayed (22 *
SELECT S.QTY_SOLD, S.ITEM_NO .0008 repetitive access)

, S.ITEM_NAME 7=.021s
FROM SALE S .004 + .01 .021 sec
WHERE S.ITEM_NO > :hv I
3 ORDER BY ITEM_NO
TU. rns OJH” FETCH FIRST 22 ROWS ONLY

-+ et -
LISt Prefetch T
000
Leaf Page Leaf Page Leaf Page Leaf Page I
0coooooooooooMoo0000M000000

Matching index access against a non-clustered index is way more efficient than List
Prefetch even with extensive random I/O.

TXMQ

TXMQ

No Operation (No Op)

* +0, CONCAT ‘ “also -0, *1, /1
* Place no op next to predicate
Use as many as needed
Discourages index access, however, preserves Stage 1
Can Alter table join sequence

Can fine tune a given access path
Can request a table scan
Works at the predicate level

Does not Benefit
Db2 on Linux,
UNIX or
Windows

Rarely used but very powerful so be careful.

48

TXMQ

No Op Example CONCAT *°

SALES_ID.MNGR.REGION Index MNGR Index REGION Index

SELECT S.QTY_SOLD Optimizer chooses Multiple Index Access

+S.ITEM_NO The table contains 100,000 rows and there are only
, S.ITEM_NAME Eeaione

FROM SALES , .

WHERE S.SALES_ID > 44 Region range qualifies 2/3 of table
AND S.MNGR = :hv-mngr <.1sec response time required
AND S.REGION BETWEEN

:thvlo AND :hvhi : -

ORDER BY S.REGION first 2 indexes

Two Matching index accesses, two small Rid sorts, &

FROM SALE S Rid intersection
WHERE S.SALES_ID > 44
AND S.MNGR = :hv-mngr
AND S.REGION BETWEEN
thvio AND :hvhi CONCAT**
ORDER BY R.REGION

No Op allows Multiple Index Access to continue on

Multiple Index Access is great when you are wanting the entire result set. If one of
the legs has no chance of performing (it qualifies far more rows that the other
gueryblocks), block Matching Access (only from the Optimizer) but still allow all the
filtering on other indexes Leafpages.

49

No Op Example - Scan

SALES_ID.MNGR.REGION Index MNGR Index REGION Index

SELECT S.QTY_SOLD If you know the predicates do very little
, S.ITEM_NO filtering, force a table scan

+ S.ITEM_NAME Use a No Op on every predicate
FROM SALE S
WHERE S.SALES_ID > 44 +0
AND S.MNGR = :hv-mngr CONCAT ** FOR FETCH ONLY encourages parallelism
AND S.REGION BETWEEN WITH UR for read only tables to reduce CPU
thvlo AND :hvhi CONCAT **
ORDER BY S.REGION
FOR FETCH ONLY
WITH UR

This forces a table scan

Should this be
Documented?

Query performance in the Db2 12 initial release - IBM Documentation

*Automated statistics collection

Db2 12 introduces several enhancements that help to automate the collection of
statistics.

Static plan stability enhancements

Db2 12 introduces improvements to the usability of static plan stability features.
*Query performance enhancements

Db2 12 introduces performance enhancements for queries that use any of the
following: outer joins, UNION ALL, archive transparency, system-period temporal
tables.

*User-defined table function performance improvements

The merge capabilities of user-defined table functions are enhanced in Db2 12 to be
similar to the capabilities of views.

sImproved performance and reliability of index access with list prefetch
Adaptive index is a Db2 12 enhancement to multi-index and single index list
prefetch-based plans that introduces logic at execution time to determine the
filtering of each index to ensure the optimal execution sequence of indexes, or
quicker reversion to table space scan if no filtering index exists.

TXMQ

https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_autostatscollect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_staticplanstability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_unionallenhance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_tableudfimprovements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_tableudfimprovements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_tableudfimprovements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_adaptiveindex.html

DISTINCT Table Expressions

* Table expressions with DISTINCT

* FROM (SELE \ v AS STEP1JOIN T2
ON .. JOINT3 ON

* Used for forcing creation of logical set of data
* No physical materialization if an index satisfies DISTINCT

* Can encourage sequential detection
* Can encourage a Merge Scan join

STEP1 Logical

STEP1 Physical

Discovered this technigue when a customer called and asked how they could get
their batch Merge Scan Join back into production. A migration changed it to a
Nested Look Join.

Merge Scan Join favors join sequence workfiles, coming from indexes either
clustered or not. The DISTINCT clause requires a sorted worklfile whether it is
materialized or not.

o Lm Py g

oo
mthg | s 0 LatRip LR [LatFig mthag [Lesifae atFage | LeetFape
cocooofluococofucoooofflocoooolococooffuocoooflcoconaffuonocaflanoona

Sequenced Workfile

1. Access outer table using the most
efficient single table access path for
applying all outer table filters, a sort
of these rows may be required to
match the join column(s) sequence

2. Access inner table using the most
efficient single table access path for
applying all inner table filters, a sort

Result of these rows may be required to

match the join column(s) sequenc

TXMQ 3. Perform match-merge check to joiﬁl
outer and inner table rows

TXMQ

DISTINCT Table Expressions Example 4%
&

e SELECT Columns
FROM 4 g
(SELECT DISTINCT COL1, COL2
FROM BIG_TABLE Z
WHERE local conditions) AS BIGZ
WHERE join conditions

= Optimizer is forced to analyze the table expression prior to
joining TABX & TABY

This was a batch query that had a
non-optimal join sequence. The
Db2 Optimizer chose to go the little
tables first and then got to the 6.6B

row table.

BIG_TABLE is accessed first
Possibly results in materialized and sorted BIGZ
workfile if DISTINCT cannot be satisfied using an
index

Great for tuning dynamic queries!

52

TXMQ

Typical Join Problem

SELECT COL1, COL2
FROM a .
join conditjons

X[TAB6.CODE = :h

Result is only 1,000 rows
ADDR and NAME first two tables in join
Index scan on table

* Not good because zero filter

Advanced SQL Tuning class assignment. Students got really creative....

53

TXMQ

Tuning Technique

SELECHCORTCOE2 5
FROM ADDR, NAME,

(SELECT DISTINCT columns
FROM AB6,

WHERE join conditions

AND (TAB6.CODE = :hv ORIO=11)
AS TEMP

WHERE join conditions

BIG tables held to be last involved in the Join

54

Using Common Table Expressions

WITH TEMP AS (SELECT columns
FROM TAB3, TAB 35, AR :
WHERE 4 join conditions

AND (TAB6.CODE =:hv OR0 = 1)) AS

SELECT COL1, COL2
FROM)

WHERE join 2 conditions

For the newbies.

55

TXMQ

Put a Query on a Diet

For Extreme Cases
(used on all platforms)

56

TXMQ

A Typical Data Warehouse Query

e |nitial cost of 16 million timerons
» WOULD NOT FINISH!

* Included a DISTINCT table expression and GROUP BY
* Initial join involved all columns and all rows

* The very wide and very deep set was dragged through
many more query steps

As queries get more complex, intra query optimization becomes necessary. Cross
qgueryblock knowledge can greatly assist the optimizer in query rewrite. Right now,
this is a manual rewrite process. One example is a statement that contained
multiple UNION ALL subselects with the initial subselect involving and join

requesting most rows all columns. This very wide and very deep set was dragged
through many query steps.

S7

TXMQ

Before and After

SELECT Lots of Columns

FROM
& (SELECT
INNER FROM

JOIN

INNER

JOIN

INNER

(SELECT JOIN
HEOM (SELECT

LEFT JOIN FROM

(SELECT DISTINCT

FR M LEFT JOIN
o (SELECT

AR FROM

(SELECT
FROM

LEFT JOIN

(SELECT
FROM
L

GROUP BY
GROUP BY

The outermost query block, the last step, requested a GROUP BY. This query
would not even finish and the timeron value was over 16 million. To manually
rewrite this query, the largest block was analyzed for the columns required for
GROUP BY and remaining LEFT JOINs. The initial SELECT list for that really wide
table expression was then manually pruned down to SELECT only critical columns,
but all rows. This essentially put the subselect on a diet so that the next 5 join steps
were much narrower. The final step was then rewritten to join back to the tables to
get the remaining SELECT list columns. This did increase the number of times that
main set was accessed but the savings from the wide joins more than offset the
cost.

Further analysis was done on the GROUP BY columns. It was determined that the
only columns needed in the GROUP BY calculation were from the main set. The
GROUP BY operation was moved from the outer most step and pushed into the first
table expression. This greatly reduced the cost of the GROUP BY operation since it
did not involve many columns.

58

TXMQ

Tuning Technique

* |dentify and pre-qualify the core set of data and only select the keys early
on

* Once all the steps are complete, go back and get the remaining columns

* Referred to as “Group By Push Down” and “put your query on a diet”
» Keeping it thin through the DB2 engine

* Brought cost down to 270,000 timerons
* Query now finishes in 4 minutes!

The query now finishes and the timerons were reduced to .27 million. This
technique of keeping the query thin through the DB2 engine has to be accomplished
through manual query rewrite for now. Start by identifying the core set of data and
only select the keys and grouping columns early on. Once all the step are
complete, go back and get the remaining columns.

59

Three Main Stories

If you would like to get all the summary of all links buried in the presentation, please send
me an email

Sheryl.Larsen@txmg.com

60

SQL Tuning Confidence Level

| hope you increased your SQL tuning confidence. If not, rinse and repeat (maybe a little
slower the second time)

Sheryl M. Larsen
Senior DB2 Consultant

Mobile: (630) - 780 - 7641
sheryl.larsen@txmg.com
Linkedln * Twitter « Facebook

TXMQ, Inc.
Imagine, Transform, Engage
TxMQ.com * TxMQStaffing.comTxMQ is a Premier IBM Business Partner

Sign up for our TXMQ Newsletter to stay on top of the latest in Technoloqy, Services
and Staffing!

61

mailto:sheryl.larsen@txmq.com
https://www.linkedin.com/in/sherylmlarsen/
https://twitter.com/txmqitsolutions
http://facebook.com/TxMQSolutions
http://txmq.com/
http://txmqstaffing.com/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/

Speaker: Sheryl Larsen

Email Address:

Sheryl.Larsen@txmqg.com

Imagine, Transform, Engage

TxMQ is a Premier IBM Business Partner Biiskess
Partner

+716-636-0070

Db2 12 for z/OS Catalog Tables - BMC Blogs - BMC Software
A new interactive Catalog application from BMC:

DB2 12 for z Optimizer (ibm.com) The Big Old Mainframe: DB2 Bind

Db2 Al for z/0S 1.4.0 - IBM Documentation PFOCESS

Overview of IBM Db2 Al for z/OS - IBM Documentation

DSN_STATEMENT CACHE TABLE -

Db2 12 for z/0OS: SQL Reference (ibm.com)

IBM Documentation

Summary of predicate processing - IBM Documentation

Automated statistics collection - IBM Documentation

IBM Data Virtualization Manager for z/OS | IBM Redbooks

Improved performance and reliability of index access with list prefetch - IBM
Documentation

Query performance in the Db2 12 initial release - IBM Documentation

Data Tech Summit Presented Live Demo but recorded from Silicon Valley Lab
October 5-7, 2021
Join session in Channel 1

62

https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/db2z_12_sqlrefbook.pdf
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://video.ibm.com/channel/tLjwDJS53N3
http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html
http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table

