
TxMQ works with companies across the globe to innovate and

transform their businesses. To excel in their industries through

the optimal use of people, process and technologies. We do this

leveraging subject matter experts in integration, cloud

architecture, process and analytics. I am honored to join this

brilliant team as the lead in their Db2 Consulting service.

Sheryl is the Senior Db2 Z Consultant at TxMQ. Previously she

worked for, BMC, IBM, Sheryl M. Larsen, Inc., and Platinum

Technology (now Broadcom). She is known for her extensive

expertise in SQL Tuning and has performed detailed Db2

Performance Health Checks for many Fortune 500 clients. Sheryl has

over 30 years’ experience in Db2, has published many articles, white

papers and co-authored a book, Db2 Answers, Osborne-McGraw-

Hill, 1999. Currently she is the President of the Midwest Db2 User

Group, an IBM Z Champion, and a member of the Northern Illinois

University Computer Science Alumni Council.

1

I hope to increase your SQL tuning confidence. If not, rinse and repeat (maybe a little
slower the second time). For English is a second language attendees, please stop to take
notes and translate when needed. All attendees should view the NotesPages as they watch
the video to gain a broader knowledge on the subject.

2

Gone are the days of manually tuning queries. NOT SO FAST! As smart as the
internal Virtual Data Scientist, inside Db2ZAI is, there are many techniques that it
cannot apply. Query re-write lives on in an Agile work environment! Human eyes
are still required on projects demanding only high-performance SQL moves on into
production. Sheryl will cover all kinds of techniques that are still best practice rules
to follow. Perfect for newbies to Db2 for z/OS due to all the pictures used to
demonstrate techniques, as well as oldies, who need a refresher.

3

DB2 Beta came out end of 1984. DB2 Version 1 Release 1 for MVS became generally

available (GA) in April 1985 and DB2 Version 1 Release 2 became GA in March
1986 -- only a month after it was announced.

4

Check current IBM SQL Reference for a complete list:
Db2 12 for z/OS: SQL Reference (ibm.com)

5

https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/db2z_12_sqlrefbook.pdf

The DB2 Optimizer is a cost-based optimizer, which means it calculates the cost of

multiple access paths (in a unit called Timerons), and then chooses the cheapest

access path. One of the advantages of the SQL language is that it means we don’t
have to know where a particular piece of data lives on disk or memory.

6

This is the flow of the Db2 Engine components. The following slides go through each step,
one at a time

7

A new interactive Catalog application from BMC:
Db2 12 for z/OS Catalog Tables - BMC Blogs - BMC Software

8

https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/

•Bind Process read DBRM which is created in precomplier stage and creates access path to

read data.

•Access path along with consistency token is stored in DB2 catalog tables as a package.

•Every package is bound into package list or collection

•Collection name is specified by package parameter.

•A Collection is a group of Packages that are included in one or more Plans. The

QUALIFIER parameter of the bind is used to direct the SQL to the specific set of DB2

objects (tables, views, aliases or synonyms) qualified by this name.

•Apart from building plans and packages, bind also validates:

1.SQL statements using DB2 Catalog

2.Validates authorization id that if owner is allowed to perform bind process

3.Selects access path depending upon availability of indexes, table size etc.

9

The Big Old Mainframe: DB2 Bind
process

http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html
http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html

DSN_STATEMENT_CACHE_TABLE - IBM Documentation

10

https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table

From an app on your phone, to the mainframe storing all the transaction data, your Access
Plan is pulled into the Buffer Manager. This component follows the instructions to pull data
from index, MQT, data into to Buffer Pool that is not already there to meet your query
needs.

11

IBM® DB2® buffer pools are still a key resource for ensuring good performance.

This has become increasingly important as the difference between processor speed

and disk response time for a random access I/O widens in each new generation of

processor. An IBM System z® processor can be configured with large amounts of

storage, which if used wisely, can help compensate by using storage to avoid
synchronous I/O.

12

Rows retrieved for a query go through two stages of processing. Certain predicates

can be applied during the first stage of processing, whereas other cannot be applied

until the second stage of processing. You can improve the performance of your

queries by using predicates that can be applied during the first stage whenever
possible.

13

TxMQ 14

There are total of 54 with 33 notes associated to the current list. Find the updates

here:
Summary of predicate processing - IBM Documentation

Indexable and stage 1 predicates 31The following predicates might be evaluated by
matching index access, during index screening, or after data page access during stage

There are 42 of them shown in slide 18 notes.

Stage 1 not indexable predicates 31The following predicates might be evaluated during
stage 1 processing, during index screening, or after data page access

There are 12 of them shown in slide 19 notes.

Stage 2 partial list is shown in slide 20 notes

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

This is an example of a non-optimal index. The query has one join predicate and 3 local
filters on the C table. Trouble is there are only two columns in the index leaving the
filtering pushed back until steps 3 and 4. A better index would be
TOKEN_NR.LAST_NM.ROLEC_CD.SEX. This moves all the filtering to step 2, greatly reducing
the I/O necessary for the query.

TxMQ 15

A better index would be TOKEN_NR.LAST_NM.ROLEC_CD.SEX. This moves all the filtering
to steps 1 and 2, greatly reducing the I/O necessary for the query.

1. skipped
2. Stage 1 Index Filtering - If there is no predicate involving the first column of the index,

tree navigation is not allowed (0 matching). Any Stage 1 predicate (all 54) can be
applied on the leaf page. This point of filtering is called index screening. Stage 2
conditions can also be applied after the Stage 1 conditions are applied (if this is index-
only access and the Stage 2 column is included in the index - like the column SEX
above.

TxMQ 16

Stage 1 Sharpie pen is much thinner that
Stage 2 because Stage 1 only has 54 filters
and Stage 2 has an almost infinite list (what
ever is not Stage 1 is Stage 2)

Partial list of Stge2:
COL BETWEEN COL1 AND COL2 10

•value NOT BETWEEN COL1 AND

COL2

•value BETWEEN col expr and col
expr32

•T1.COL <> T2.COL

•T1.COL1 = T1.COL2 3,25

•T1.COL1 op T1.COL2 3

•T1.COL1 <> T1.COL2 3

•COL = ALL (noncor subq)

•COL <> (noncor subq) 22

•COL <> ALL (noncor subq)

•COL NOT IN (noncor subq)

•COL = (cor subq) 5

•COL = ALL (cor subq)

•COL op (cor subq) 5

•COL op ANY (cor subq) 22

•COL op ALL (cor subq)

•COL <> (cor subq) 5

•COL <> ANY (cor subq) 19

•(COL1,...COLn) IN (cor subq)

•COL NOT IN (cor subq)

•(COL1,...COLn) NOT IN (cor subq)

•T1.COL1 IS DISTINCT FROM

T2.COL2 3

•T1.COL1 IS DISTINCT FROM T2 col
expr 8, 11

•COL IS NOT DISTINCT FROM (cor
subq)

•EXISTS (subq)19

17

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

Sort rules are:

1. If you are sorting on a unique key do not include any other columns to the ORDER BY
2. Do not add redundant columns to the ORDER BY.
3. So not SELECT columns that you already know example:

WHERE NAME = ‘SHERYL’
Do NOT put NAME in the SELECT list

18

Indexable and stage 1 predicates- 31The following
predicates might be evaluated by matching index access,
during index screening, or after data page access during
stage 1 processing
1. .COL = value 16, 31

2. COL = noncol expr 9, 11, 12, 15, 29, 31, 32

3. COL IS NULL 20, 21

4. COL op value 13, 31

5. COL op noncol expr 9, 11, 12, 13, 29, 31, 32

6. value BETWEEN COL1 AND COL2 13, 32

7. COL BETWEEN value1 AND value2 13

8. COL BETWEEN noncol expr 1 AND noncol
expr 2 9, 11, 12, 13, 23, 29

9. COL BETWEEN expr-1 AND expr-
2 6, 7, 11, 12, 13, 14, 15, 27, 29

10. COL LIKE 'pattern' 29

11. COL IN (list) 17, 18

12. COL IS NOT NULL 21

13. COL LIKE host variable 2, 29

14. COL LIKE UPPER ('pattern') 29

15. COL LIKE UPPER (host-variable) 2, 29

16. COL LIKE UPPER (SQL-variable)2, 29

17. COL LIKE UPPER (global-variable)2, 29

18. COL LIKE UPPER (CAST ('pattern' AS data-
type))2, 29

19. COL LIKE UPPER (CAST (host-
variable AS data-type))2, 29

20. COL LIKE UPPER (CAST (SQL-
variable AS data-type))2, 29

21. COL LIKE UPPER (CAST (global-
variable AS data-type))2, 29

22. 2, 29

23. T1.COL = T2.COL

24. T1.COL op T2.COL

25. T1.COL = T2 col expr 6, 9, 11, 12, 14, 15, 25, 27, 29

26. T1.COL op T2 col expr 6, 9, 11 , 12, 13, 14, 15, 29

27. COL = (noncor subq)

28. COL op (noncor subq) 28

29. COL = ANY (noncor subq) 22, 29

30. (COL1,...COLn) IN (noncor subq) 29

31. COL = ANY (cor subq) 19, 22, 29

32. COL IS NOT DISTINCT FROM value 16

33. COL IS NOT DISTINCT FROM noncol
expr 9, 11, 12, 15, 29

34. T1.COL1 IS NOT DISTINCT FROM T2.COL2 3, 4

35. T1.COL1 IS NOT DISTINCT FROM T2 col
expr 6, 9, 11, 12, 14, 15, 29

36. COL IS NOT DISTINCT FROM (noncor subq)

37. SUBSTR(COL,1,n) = value

38. SUBSTR(COL,1,n) op value

39. DATE(COL) = value33

40. DATE(COL) op value33

41. YEAR(COL) = value33

42. YEAR(COL) op value33

 19

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

Stage 1 not indexable predicates 31

The following predicates might be evaluated during stage 1 processing, during index
screening, or after data page access.

1. COL <> value 8, 11

2. COL <> noncol expr 8, 11, 29

3. COL NOT BETWEEN value1 AND value2

4. COL NOT IN (list)

5. COL NOT LIKE ' char' 29

6. COL LIKE '%char' 1, 29

7. COL LIKE '_char' 1, 29

8. T1.COL <> T2 col expr 8, 11, 27, 29

9. COL op ANY (noncor subq) 22

10. COL op ALL (noncor subq)

11. COL IS DISTINCT FROM value 8, 11

12. COL IS DISTINCT FROM (noncor subq)

20

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

Stage 2 predicates- The following predicates must be
processed during stage 2, after the data is returned.

The list is not complete due to any predicate not Stage 1
Indexable or Stage 1 index/data screening is State 2.

COL BETWEEN COL1 AND COL2 10

•value NOT BETWEEN COL1 AND COL2

•value BETWEEN col expr and col expr32

•T1.COL <> T2.COL

•T1.COL1 = T1.COL2 3,25

•T1.COL1 op T1.COL2 3

•T1.COL1 <> T1.COL2 3

•COL = ALL (noncor subq)

•COL <> (noncor subq) 22

•COL <> ALL (noncor subq)

•COL NOT IN (noncor subq)

•COL = (cor subq) 5

•COL = ALL (cor subq)

•COL op (cor subq) 5

•COL op ANY (cor subq) 22

•COL op ALL (cor subq)

•COL <> (cor subq) 5

•COL <> ANY (cor subq) 19

•(COL1,...COLn) IN (cor subq)

•COL NOT IN (cor subq)

•(COL1,...COLn) NOT IN (cor subq)

•T1.COL1 IS DISTINCT FROM T2.COL2 3

•T1.COL1 IS DISTINCT FROM T2 col expr 8, 11

•COL IS NOT DISTINCT FROM (cor subq)

•EXISTS (subq)19

•expression = value 27, 32

•expression <> value 27

•expression op value 27, 32

•expression op (subq)

•NOT XMLEXISTS

•CASE expression WHEN expression ELSE expr
ession END = value 32

….
Indexable but not stage 1 predicates The following
predicates can be processed during index access, but
cannot be processed during stage 1
XMLEXISTS 26

21

https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing

22

DB2 12 for z Optimizer (ibm.com)

https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf

24

DB2 12 for z Optimizer (ibm.com)

https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf

Open ended ranges, ‘>’ etc. are larger 1/1000 vs. closed ended ranges, BETWEEN or LIKE
are smaller. 3/10,000. This is the default % of rows the optimizer is estimating will come
back from your WHERE clause. Notice that it screams, “Use and Index!”

This may be far from reality.

Use machine learning to improve the quality and effectiveness of inputs to the optimizer
cost model

25

It wasn’t always like this, but IBM keeps adding new cool access techniques.

From Terry Purcell’s RedPaper:

“nearly 100% new access paths vs. Db2 11” .

26

DB2 12 for z Optimizer (ibm.com)

https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf

From Overview of IBM Db2 AI for z/OS

Db2® AI for z/OS® (“Db2ZAI”) empowers the optimizer in your Db2 for z/OS engine

to determine the best-performing query access paths, based on your workload

characteristics. In addition, Db2ZAI detects Db2 system performance exceptions

and provides recommended actions for tuning which are based on your

environment.

The optimizer consists of Relational Data Services (“RDS”) components that govern

query transformation, access path selection, run time, and parallelism for every SQL

statement in your system. The access path for an SQL statement essentially

dictates how Db2 accesses the data that the query specifies. It determines the

indexes and tables that are accessed, the access methods that are used, and the

order in which objects are accessed.

Leveraging machine learning technology, Db2ZAI collects data from the Db2 for

z/OS optimizer and the query execution history, which are derived from workloads in

your unique operating environment. As part of the model training

process, Db2ZAI then finds patterns from this data and learns the optimal access

paths for queries entering Db2 for z/OS.

Once trained, the model is ready to be deployed into production, providing insights

to the optimizer's access path selection. These insights are in addition to what the

optimizer uses today in the selection of the best query path. The information is

unique to your environment, and currently unknown to the traditional query

optimizer. With the new intelligence on the insights gained from these models, the

query optimizer is better able to identify the optimal access paths for SQL

statements
 27

Virtual Data Scientist! Has the data, knows which algorithm to use, learns from modeling
and scoring, provides solutions, and cleans up after itself.

28

Data Tech Summit Presented Live Demo but recorded from Silicon Valley Lab

October 5-7, 2021

Join session in Channel 1 - Many considerations can be made regarding design

choices when building and maintaining Db2 for z/OS indexes with regard to high

performance. This presentation is going to attempt to address many of those

choices, but it is the combination of knowing how an application is going to use the

database as well as adequate testing to make the appropriate design decisions

Tom Beavin, Db2 Developer, IBM

Tom Ramey, Director, WW Z Data and AI, IBM

29

https://video.ibm.com/channel/tLjwDJS53N3
https://video.ibm.com/channel/tLjwDJS53N3
https://video.ibm.com/channel/tLjwDJS53N3
https://video.ibm.com/channel/tLjwDJS53N3

A type of supervised machine learning: classification

Classification Predictive Modeling. In machine learning, classification refers to a

predictive modeling problem where a class label is predicted for a given example of

input data.

Another type of supervised machine learning: regression

Regression is a supervised machine learning technique which is used to predict
continuous values. The ultimate goal of the regression algorithm is to plot a best-

fit line or a curve between the data. The three main metrics that are used for

evaluating the trained regression model are variance, bias and error.

Automated statistics collection - IBM Documentation

30

https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection

This is the game changer for static SQL. Think BIG static Batch runs and Dynamic Queries
too. This alone can flip table join sequences.

31

Most DB2 predicates are based on the columns of a table. They either qualify
rows (through an index) or reject rows (returned by a scan) when the table is

accessed.

32

Db2 AI for z/OS will feel the organization of your data during training and adjust its
algorithm to use less memory over time. For z15, sort hardware assist may be available.

33

DB2 Version 6 had two releases because parallelism was broken and gave bad results. This
caused EVERYONE to back off from using it. That was so long ago it no longer applies. The
current Db2 Optimizer is cautious of taking queries parallel in general. Db2ZAI turbo
charges its appetite for going more aggressive into parallelism.

34

From IBM’s Overview of V1.4.0:
Overview of IBM Db2 AI for z/OS - IBM Documentation

35

https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos

What's new in IBM Db2 AI for z/OS 1.4.0 - IBM Documentation

What's new in version 1.4.0?

•Improved automated SQL regression detection and resolution, enabling

regressions to be detected and resolved more quickly, and in some cases in real-

time, even before the query has completed execution.

•Sort optimization enabled for OLTP queries, which can result in savings of CPU

resources.

•Improved sort optimization when combined with the IBM® z15™ hardware sort

assist for SQL, whereby learning can improve exploitation of the z15 sort feature.

•Improved SQL optimization user interface, which clearly shows the benefits

that Db2ZAI is providing by highlighting progress, benefits, and actions to be taken:

• Db2ZAI now shows the progress it has made in learning about static

SQL packages and dynamic SQL statements.

• The improved SQL optimization dashboard shows the benefits provided

by Db2ZAI in terms of SQL statements improved, average CPU

improvement, and access path regressions resolved.

• The improved user interface clearly indicates the recommended actions

to be taken to improve performance.

36

https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=whats-new-in-db2-ai-zos-140

This is part of a picture of the most expensive query I have ever tuned

37

¾ billion getpages with traced turned on only for 3 days. Orders of magnitude more
expensive that anything else. This is not SQL injection. This is SQL explicitly forced to
execute and read the entire result.

38

SQL statements can sneak into your shop. The query re-write took the getpages

down to 6 per execution. Just a correlated EXISTS check returning no data. Back

track to the actual business question being asked to see if the query answers

correctly.

39

The tuned expensive query brought down IBM MIPS used 300 points in one day. The entire
manual tuning effort to seven months to complete starting at a near $5million looming CPU
upgrade 1600 MIPS and reducing to 600 MIPS. No upgrade was needed for the next five
years!

40

Hire a full time Sherriff to keep an eye on your workload and your statistics!

41

TxMQ 42

Best practices for query design from IBM Efficient SQL list: 8.8.1 SQL best practices
1. Do not code mathematics on columns in predicates.

2. Sort only on the columns that are needed. No need to ORDERBY BY EMPNO, LASTNAME when you can ORDERBY EMPNO.

3. Watch out for the LIKE predicate. Begins With logic is indexable. Contains is not indexable. Ends With is not indexable.

4. Do not code Not Between. Rewrite it as >:HV OR :HV<

5. Use Fetch First XX Rows whenever possible.

6. Make sure cardinality statistics exist for all columns in all tables.

7. Code Not Exists over Not In. Both are stage 2 predicates but Not Exists typically outperforms the Not In, especially if the list is

long.

8. When joining two tables the execution is faster if the larger table is on the left side of the join.

9. Code WHERE clauses with columns that have unique or good indexes.

10. Prioritize WHERE clauses to maximize their effectiveness. First code the WHERE column clauses that reference indexed keys,

then the WHERE column clauses that limit the most data, and then the WHERE clauses on all columns that can filter the data

further.

11. When looking for a small set of records, try to avoid reading the full table by using an index and by providing any possible key

values. You can also use more WHERE clauses so that the fetch goes directly to the actual records.

12. All Case logic should have an else coded, which eliminates DB2 returning nulls by default if all the Case conditions are not met.

13. Stay away from Not logic if possible. Minimize the number of times cursors are opened and closed. Code stage 1 predicates only.

14. Rewrite any stage 2 predicates. Use FOR FETCH ONLY on all read only cursors.

15. Reduce the number of rows to process early by using Sub-selects and WHERE predicates.

16. Avoid joining two types of columns and lengths when joining two columns of different data types or lengths. One of the columns

must be converted to either the type or the length of the other column.

17. Limit the use of functions against large amounts of data

18. Do not code functions on columns in predicates.

19. Minimize the number of times DB2 SQL statements are sent.

20. Only select the columns that are needed.

https://www.redbooks.

ibm.com/Redbooks.ns

f/RedbookAbstracts/s

g248514.html?Open

https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open

TxMQ 43

1. Examine Program logic – check for program filtering and joining. Move work into

the query.

2. Examine FROM clause – order of tables insignificant unless > 9 table joins. List

preferred join sequence for this and OUTER JOINs

3. Verify Join conditions – make sure every table is hooked up correctly to avoid

cartesian joins

4. Promote Stage 2’s/Residuals and Stage 1’s if possible – promotions can change

access paths

5. Verify data type matches – mismatched numeric and date/time will cause delays in

filtering and alter the access path

6. Prune SELECT lists – remove columns with values determined to be static by

WHERE clause filtering. Remove columns used in the ORDER BY or GROUP BY

sequencing but not needed for the display.

7. Verify local filtering sequence – If host variables are used, add parenthesis to

override the predetermined filtering sequence when necessary. This reduces the

CPU required to disqualify rows

8. Analyze Access Paths – Only check the access path of the FINAL query, after query

rewrite, bound with production statistics in a subsystem that resembles the

production thresholds as closely as possible.

9. Tune if necessary – A topic for today!

TxMQ 44

You can use multiple techniques but should add them one at a time.

TxMQ 45

The IBM Db2 AI for z/OS product adds Optimize for n Rows if you forget.

TxMQ 46

Improved performance and reliability of index access with list prefetch - IBM
Documentation
NEW Db212 List Prefetch enhancements

Adaptive index is a Db2 12 enhancement to multi-index and single index list

prefetch-based plans that introduces logic at execution time to determine the

filtering of each index to ensure the optimal execution sequence of indexes, or

quicker reversion to table space scan if no filtering index exists.

This enhancement does not require any usage of REOPT bind parameters and

therefore avoids any reoptimization overhead at execution time.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch

TxMQ 47

Matching index access against a non-clustered index is way more efficient than List

Prefetch even with extensive random I/O.

TxMQ 48

Rarely used but very powerful so be careful.

TxMQ 49

Multiple Index Access is great when you are wanting the entire result set. If one of

the legs has no chance of performing (it qualifies far more rows that the other

queryblocks), block Matching Access (only from the Optimizer) but still allow all the

filtering on other indexes Leafpages.

TxMQ 50

Query performance in the Db2 12 initial release - IBM Documentation
•Automated statistics collection

Db2 12 introduces several enhancements that help to automate the collection of

statistics.

•Static plan stability enhancements

Db2 12 introduces improvements to the usability of static plan stability features.

•Query performance enhancements

Db2 12 introduces performance enhancements for queries that use any of the

following: outer joins, UNION ALL, archive transparency, system-period temporal

tables.

•User-defined table function performance improvements

The merge capabilities of user-defined table functions are enhanced in Db2 12 to be

similar to the capabilities of views.

•Improved performance and reliability of index access with list prefetch

Adaptive index is a Db2 12 enhancement to multi-index and single index list

prefetch-based plans that introduces logic at execution time to determine the

filtering of each index to ensure the optimal execution sequence of indexes, or

quicker reversion to table space scan if no filtering index exists.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_autostatscollect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_staticplanstability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_unionallenhance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_tableudfimprovements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_tableudfimprovements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_tableudfimprovements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_adaptiveindex.html

TxMQ 51

Discovered this technique when a customer called and asked how they could get

their batch Merge Scan Join back into production. A migration changed it to a

Nested Look Join.

Merge Scan Join favors join sequence workfiles, coming from indexes either

clustered or not. The DISTINCT clause requires a sorted worklfile whether it is

materialized or not.

 2

3

4

Sequenced Workfile Sequenced Workfile

1. Access outer table using the most

efficient single table access path for

applying all outer table filters, a sort

of these rows may be required to

match the join column(s) sequence

2. Access inner table using the most

efficient single table access path for

applying all inner table filters, a sort

of these rows may be required to

match the join column(s) sequence

3. Perform match-merge check to join

outer and inner table rows

Result

TxMQ 52

This was a batch query that had a
non-optimal join sequence. The
Db2 Optimizer chose to go the little
tables first and then got to the 6.6B
row table.
BIG_TABLE is accessed first

Possibly results in materialized and sorted BIGZ
workfile if DISTINCT cannot be satisfied using an
index

Great for tuning dynamic queries!

TxMQ 53

Advanced SQL Tuning class assignment. Students got really creative….

TxMQ 54

BIG tables held to be last involved in the Join

For the newbies.

55

TxMQ 56

TxMQ 57

As queries get more complex, intra query optimization becomes necessary. Cross

queryblock knowledge can greatly assist the optimizer in query rewrite. Right now,

this is a manual rewrite process. One example is a statement that contained

multiple UNION ALL subselects with the initial subselect involving and join

requesting most rows all columns. This very wide and very deep set was dragged

through many query steps.

TxMQ 58

The outermost query block, the last step, requested a GROUP BY. This query

would not even finish and the timeron value was over 16 million. To manually

rewrite this query, the largest block was analyzed for the columns required for

GROUP BY and remaining LEFT JOINs. The initial SELECT list for that really wide

table expression was then manually pruned down to SELECT only critical columns,

but all rows. This essentially put the subselect on a diet so that the next 5 join steps

were much narrower. The final step was then rewritten to join back to the tables to

get the remaining SELECT list columns. This did increase the number of times that

main set was accessed but the savings from the wide joins more than offset the

cost.

Further analysis was done on the GROUP BY columns. It was determined that the

only columns needed in the GROUP BY calculation were from the main set. The

GROUP BY operation was moved from the outer most step and pushed into the first

table expression. This greatly reduced the cost of the GROUP BY operation since it

did not involve many columns.

TxMQ 59

The query now finishes and the timerons were reduced to .27 million. This

technique of keeping the query thin through the DB2 engine has to be accomplished

through manual query rewrite for now. Start by identifying the core set of data and

only select the keys and grouping columns early on. Once all the step are

complete, go back and get the remaining columns.

If you would like to get all the summary of all links buried in the presentation, please send
me an email

Sheryl.Larsen@txmq.com

60

I hope you increased your SQL tuning confidence. If not, rinse and repeat (maybe a little
slower the second time)

Sheryl M. Larsen

Senior DB2 Consultant

Mobile: (630) - 780 - 7641

sheryl.larsen@txmq.com

LinkedIn • Twitter • Facebook

TxMQ, Inc.

Imagine, Transform, Engage

TxMQ.com • TxMQStaffing.comTxMQ is a Premier IBM Business Partner

Sign up for our TxMQ Newsletter to stay on top of the latest in Technology, Services

and Staffing!

61

mailto:sheryl.larsen@txmq.com
https://www.linkedin.com/in/sherylmlarsen/
https://twitter.com/txmqitsolutions
http://facebook.com/TxMQSolutions
http://txmq.com/
http://txmqstaffing.com/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/
https://www.txmq.com/newsletter-sign-up/

Db2 12 for z/OS Catalog Tables - BMC Blogs - BMC Software
A new interactive Catalog application from BMC:

DB2 12 for z Optimizer (ibm.com)

Db2 AI for z/OS 1.4.0 - IBM Documentation

Overview of IBM Db2 AI for z/OS - IBM Documentation

Db2 12 for z/OS: SQL Reference (ibm.com)

Summary of predicate processing - IBM Documentation

Automated statistics collection - IBM Documentation

IBM Data Virtualization Manager for z/OS | IBM Redbooks

Improved performance and reliability of index access with list prefetch - IBM
Documentation

Query performance in the Db2 12 initial release - IBM Documentation

Data Tech Summit Presented Live Demo but recorded from Silicon Valley Lab

 October 5-7, 2021
Join session in Channel 1

62

The Big Old Mainframe: DB2 Bind
process

DSN_STATEMENT_CACHE_TABLE -
IBM Documentation

https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.bmc.com/blogs/db2/
https://www.redbooks.ibm.com/redpapers/pdfs/redp5445.pdf
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/db2-ai-for-zos/1.4.0?topic=overview-db2-ai-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/db2z_12_sqlrefbook.pdf
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=efficiently-summary-predicate-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-automated-statistics-collection
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248514.html?Open
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-improved-performance-reliability-index-access-list-prefetch
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://www.ibm.com/docs/en/db2-for-zos/12?topic=12-query-performance-in-db2-initial-release
https://video.ibm.com/channel/tLjwDJS53N3
http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html
http://thebigoldmainframe.blogspot.com/2012/10/db2-bind-process.html
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-statement-cache-table

